@Andrew We need to send Chris back out to test your calculations. He’s the obvious choice since he knows the route.

Should he demur the invitation we can have the Rocket Scientists GregC and DougB-Way UpStateNY its called Michigan gov us some impressive mathematical haiku=jitsu.

A pointless undertaking

Too much pain; no fun

Maybe raise some dough

And help some kids get better

Route planned for next year

Way to GO Chris! I’m thinking your choice of route (and pushing yourself all the way to the full 100 miles) is very Noodle-esqe!

In fact, Fatty…you should conspire w/ Noodle and have her choose a winner every year to the 100MON’er who does the most inspiring event (the Iron Noodle award, or something along that line)…sadly she is automatically disqualified from this award simply due to the unfairness of the rest of us coming up with anything more difficult than her ride.

]]>Teeth hurt from sugar

cookies always in my mouth

riding works them off……

Somewhat.

]]>I can’t pass this up…I’m a nerd, and it’s a Friday.

A quick look at Strava told me he was riding clockwise (left turns), so let’s assume a few things.

1) Chris’ rides in the exact middle of the lane.

2) Each lap was 0.7175 miles (I chose a random slice for 20 laps (mile 20 to mile 34.35))

3) Standard lane widths for residential streets are 18 ft (36 ft total for the street, or 18ft from center of one lane to center of the other lane). (http://eng.lacity.org/techdocs/streetd/figures/e100/e113.pdf)

Therefore, ignoring the pee break, it should have taken Chris (100 miles)/ (0.7175 miles/lap) or 139.37 (140) laps the way he rode it.

If he rides in the other direction, his rectangular course means all the straightaways are the same distance, it’s only the turns that would change. Let’s figure out the total distance traveled around the four corners.

For one lap, assume the inside lane has a radius of 15 ft (center of the lane makes 9ft to the curb, and the curb has a radius of 6ft) and the outside lane has a radius of 33 ft (18 ft to the next center of the lane).

For all four corners only (no straights), he travels 94.25 ft on the inside lane and 207.35 ft for the outside lane. (0.7175 miles is 3788.4 ft, so he always travels 3581.05 ft on the straightaways).

With the smaller radius (inside lane), he would have traveled (3581.05 ft + 94.25 ft) = 3675.3 ft. This is actually .6960795 miles per lap.

So, assuming a rectangle with curved corners, it would have taken Chris 143.66175 (144) laps.

So…he would have needed four extra laps.

]]>I’m Haiku’d out to respond appropriately so HAIKUDOs to Chris!! ]]>

kudos are insufficient. Chris deserves **Hai-Ku-Dos !**